1,964 research outputs found

    A critique of avian CHD-based molecular sexing protocols illustrated by a Z-chromosome polymorphism detected in auklets

    Get PDF
    The sexes of non-ratite birds can be determined routinely by PCR amplification of the CHD-Z and CHD-W genes. CHD -based molecular sexing of four species of auklets revealed the presence of a polymorphism in the Z chromosome. No deviation from a 1:1 sex ratio was observed among the chicks, though the analyses were of limited power. Polymorphism in the CHD-Z gene has not been reported previously in any bird, but if undetected it could lead to the incorrect assignment of sex. We discuss the potential difficulties caused by a polymorphism such as that identified in auklets and the merits of alternative CHD -based sexing protocols and primers

    On the Representation Theory of an Algebra of Braids and Ties

    Full text link
    We consider the algebra En(u){\cal E}_n(u) introduced by F. Aicardi and J. Juyumaya as an abstraction of the Yokonuma-Hecke algebra. We construct a tensor space representation for En(u){\cal E}_n(u) and show that this is faithful. We use it to give a basis for En(u){\cal E}_n(u) and to classify its irreducible representations.Comment: 24 pages. Final version. To appear in Journal of Algebraic Combinatorics

    Single nucleotide polymorphisms in the bovine leptin gene and their association with carcass and efficiency traits, and endocrine profiles, in female Angus cows

    Get PDF
    One hundred and fifty female Angus cattle were genotyped for the bovine leptin gene SNPs UASMS1, UASMS2, E2FB and E2JW. Net Feed Intake (NFI) Estimated Breeding Values (EBVs) and E2JW SNP data was also acquired from 169 Angus cattle that originated from Trangie Research Station, NSW, and were selected for a divergence in feed efficiency. The E2JW SNP was associated with NFI, NFI EBV and P8 fatness. The UASMS1 and UASMS2 SNPs were associated with circulating leptin concentrations. These particular associations have not been reported previously but similar associations have reported in North American studies. The inconsistent associations suggest that these SNPs are not good candidates for marker-assisted selection for NFI. Also, the investigation of associations with endocrine profiles that reflect body composition such as leptin, requires genotyping of a larger number of Australian cattle than was possible in this experiment

    The Magnificent Seven: Magnetic fields and surface temperature distributions

    Get PDF
    Presently seven nearby radio-quiet isolated neutron stars discovered in ROSAT data and characterized by thermal X-ray spectra are known. They exhibit very similar properties and despite intensive searches their number remained constant since 2001 which led to their name ``The Magnificent Seven''. Five of the stars exhibit pulsations in their X-ray flux with periods in the range of 3.4 s to 11.4 s. XMM-Newton observations revealed broad absorption lines in the X-ray spectra which are interpreted as cyclotron resonance absorption lines by protons or heavy ions and / or atomic transitions shifted to X-ray energies by strong magnetic fields of the order of 10^13 G. New XMM-Newton observations indicate more complex X-ray spectra with multiple absorption lines. Pulse-phase spectroscopy of the best studied pulsars RX J0720.4-3125 and RBS 1223 reveals variations in derived emission temperature and absorption line depth with pulse phase. Moreover, RX J0720.4-3125 shows long-term spectral changes which are interpreted as due to free precession of the neutron star. Modeling of the pulse profiles of RX J0720.4-3125 and RBS 1223 provides information about the surface temperature distribution of the neutron stars indicating hot polar caps which have different temperatures, different sizes and are probably not located in antipodal positions.Comment: 10 pages, 8 figures, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    Calcium confusion--is the variability in calcium response by Sertoli cells to specific hormones meaningful or simply redundant?

    Get PDF
    When results of more than ten different studies on hormone-induced calcium signals in Sertoli cells are taken together, a wide variety of responses emerges. The reported changes range from increased concentrations, via no response at all, to decreased calcium concentrations. Minor variations in cell isolation techniques, culture conditions, or techniques for measuring the intracellular calcium could explain some of these differences. However, erratic variations in response are also observed within research groups under very similar experimental conditions. Such 'negative' findings are mainly reported orally and do not further penetrate the scientific community. As hormone-dependent calcium responses evidently may depend very much on the context of the cells, calcium transients would appear to be unreliable bioassay principles with which to detect the primary actions of FSH and effectors such as androgens on Sertoli cells. A more important biological question is whether these sometimes opposed calcium transients are connected with a particular cellular response. To date there is no evidence for such a tight coupling in Sertoli cells, implying that, at least under in vitro conditions, calcium signals might even be redundant altogether. Such calcium variability is probably not unique to Sertoli cells, and the aim of this commentary is to promote an open debate that may help to transform the current state of 'calcium confusion' into a better understanding of the intracellular calcium language

    Structural And Magnetic Study Of Labacocu O5+δ

    Get PDF
    The structure and magnetic properties of the compound LaBaCuCo O5+δ have been studied for the non-stoichiometric oxygen concentration δ≈0.6. The structure is pseudo-cubic with a tripled perovskite unit cell. The crystal structure was determined by a combined Rietveld fit to neutron and synchrotron x-ray powder diffraction data in the orthorhombic Pmmm space group, with cell parameters a=3.9223 (3) Å, b=3.9360 (3) Å, c=11.7073 (8) Å, and V=180.74 (2) Å3 (room temperature). Antiferromagnetic ordering of Cu and Co magnetic moments is observed below 205 (4) K. The magnetic structure with cell aM =2a, bM =2b, and cM =2c, could be described with the Shubnikov space group Fmm m′. The magnetic moments of both equivalent Cu/Co sites were determined at 50 and 170 K to be 0.83 (3) μB and 0.58 (3) μB, respectively, consistent with one unpaired electron per atom. The fit of the intensities to a simple mean field magnetic model appeared to be insufficient to account for the variation of moments at temperatures close to TN while a three dimensional Heisenberg model could improve the fit. Susceptibility measurements between 4 and 350 K also show irreversibility below 150 K. The local environments of Cu and Co were studied by extended x-ray absorption fine structure spectroscopy at both absorption edges. Cu atoms adopt an elongated octahedral or square-based pyramidal oxygen environment which suggests mainly the presence of Cu(II) in the structure. Co adopts different local environments, depending on the electronic and spin states. © 2005 The American Physical Society.7114Er-Rakho, L., Michel, C., Lacorre, P., Raveau, B., (1988) J. Solid State Chem., 73, p. 531. , JSSCBI 0022-4596 10.1016/0022-4596(88)90141-7Meyer, C., Hartmann-Boutron, F., Gros, Y., Strobel, P., (1990) Solid State Commun., 76, p. 163. , SSCOA4 0038-1098 10.1016/0038-1098(90)90535-JAtanassova, Y.K., Popov, V.N., Bogachev, G.G., Iliev, M.N., Mitros, C., Psycharis, V., Pissas, M., (1993) Phys. Rev. B, 47, p. 15201. , PRBMDO 0163-1829 10.1103/PhysRevB.47.15201Mombrú, A.W., Christides, C., Lappas, A., Prassides, K., Pissas, M., Mitros, C., Niarchos, D., (1994) Inorg. Chem., 33, p. 1255. , INOCAJ. 0020-1669Caignaert, V., Mirebeau, I., Bouree, F., Nguyen, N., Ducouret, A., Greneche, J.M., Raveau, B., (1995) J. Solid State Chem., 114, p. 24. , JSSCBI 0022-4596 10.1006/jssc.1995.1004Mombrú, A.W., Prassides, K., Christides, C., Erwin, R., Pissas, M., Niarchos, C., Mitros, D., (1998) J. Phys.: Condens. Matter, 10, p. 1247. , JCOMEL. 0953-8984. 10.1088/0953-8984/10/6/008Ruiz-Aragón, M., Amador, U., Morán, E., Andersen, N.H., (1994) Physica C, 235-240, p. 1609. , PHYCE6. 0921-4534Pissas, M., Mitros, C., Kallias, G., Psycharis, V., Niarchos, D., Simopoulos, A., Kostikas, A., Prassides, K., (1991) Physica C, 185, p. 553. , PHYCE6 0921-4534Pissas, M., Mitros, C., Kallias, G., Psycharis, V., Simopoulos, A., Kostikas, A., Niarchos, D., (1992) Physica C, 192, p. 35. , PHYCE6 0921-4534 10.1016/0921-4534(92)90740-4Er-Rakho, L., Michel, C., Studer, F., Raveau, B., (1977) J. Phys. Chem. Solids, 48, p. 377. , JPCSAW 0022-3697Pardo, H., Ortiz, W.A., Araújo-Moreira, F.M., Suescun, L., Toby, B., Quagliata, E., Negreira, C.A., Mombrú, A.W., (1999) Physica C, 313, p. 105. , PHYCE6. 0921-4534. 10.1016/S0921-4534(98)00668-6Mombrú, A.W., Pardo, H., Suescun, L., Toby, B.H., Ortiz, W.A., Negreira, C.A., Araújo-Moreira, F.M., (2001) Physica C, 356, p. 149. , PHYCE6. 0921-4534Mombrú, A.W., Goeta, A.E., Pardo, H., Lisboa-Filho, P.N., Suescun, L., Mariezcurrena, R.A., Ventura, O.N., Araújo-Moreira, F.M., (2002) J. Solid State Chem., 166, p. 251. , JSSCBI. 0022-4596Guskos, N., Likodimos, V., Kuriata, J., Metz, H., Windsch, W., Wabia, M., Mitros, C., Niarchos, D., (1994) Phys. Status Solidi B, 181, p. 69. , PSSBBD 0370-1972Ruiz-Aragón, M.J., Morán, E., Amador, U., Martínez, J.L., Andersen, N.H., Ehrenberg, H., (1998) Phys. Rev. B, 58, p. 6291. , PRBMDO. 0163-1829. 10.1103/PhysRevB.58.6291Pissas, M., Kallias, G., Psycharis, V., Gamari-Seale, H., Niarchos, D., Simopoulos, A., Sonntag, R., (1997) Phys. Rev. B, 55, p. 397. , PRBMDO 0163-1829 10.1103/PhysRevB.55.397Potze, R.H., Sawatzky, G.A., Abbate, M., (1995) Phys. Rev. B, 51, p. 11501. , PRBMDO 0163-1829 10.1103/PhysRevB.51.11501Takahashi, H., Munakata, F., Yamanaka, M., (1998) Phys. Rev. B, 57, p. 15211. , PRBMDO 0163-1829 10.1103/PhysRevB.57.15211Chappel, E., Holzapfel, M., Chouteau, G., Ott, A., (2000) J. Solid State Chem., 154, p. 451. , JSSCBI 0022-4596Krimmel, A., Reehuis, M., Paraskevopoulos, M., Hemberger, J., Loidl, A., (2001) Phys. Rev. B, 64, p. 224404. , PRBMDO 0163-1829 10.1103/PhysRevB.64.224404Brinks, H.W., Fjellvåg, H., Kjekshus, A., Hauback, B.C., (1999) J. Solid State Chem., 147, p. 467. , JSSCBI. 0022-4596Pouchard, M., Villesuzanne, A., Doumerc, J.P., (2001) J. Solid State Chem., 162, p. 282. , JSSCBI 0022-4596 10.1006/jssc.2001.9294Paraskevopoulos, M., Hemberger, J., Krimmel, A., Loidl, A., (2001) Phys. Rev. B, 63, p. 224416. , PRBMDO 0163-1829 10.1103/PhysRevB.63.224416Nakatsugawa, H., Iguchi, E., (2001) J. Solid State Chem., 159, p. 215. , JSSCBI 0022-4596Hansteen, O.H., Fjellvåg, H., Hauback, B.C., (1998) J. Solid State Chem., 141, p. 411. , JSSCBI. 0022-4596Fauth, F., Suard, E., Caignaert, V., (2001) Phys. Rev. B, 65, p. 060401. , PRBMDO 0163-1829 10.1103/PhysRevB.65.060401Huang, Q.Z., Karen, V.L., Santoro, A., Kjekshus, A., Lindén, J., Pietari, T., Karen, P., (2003) J. Solid State Chem., 172, p. 73. , JSSCBI. 0022-4596Barbey, L., Nguyen, N., Caignaert, V., Hervieu, M., Raveau, B., (1992) Mater. Res. Bull., 27, p. 295. , MRBUAC 0025-5408 10.1016/0025-5408(92)90058-8Zaliznyak, I.A., Tranquada, J.M., Erwin, R., Moritomo, Y., (2001) Phys. Rev. B, 64, p. 195117. , PRBMDO 0163-1829 10.1103/PhysRevB.64.195117Wu, J., Leighton, C., (2003) Phys. Rev. B, 67, p. 174408. , PRBMDO 0163-1829 10.1103/PhysRevB.67.174408Ibarra, M.R., Mahendiran, R., Marquina, C., García-Landa, B., Blasco, J., (1998) Phys. Rev. B, 57, p. 3217. , PRBMDO. 0163-1829. 10.1103/PhysRevB.57.R3217Huang, Q., Karen, P., Karen, V.L., Kjekshus, A., Lynn, J.W., Mighell, A.D., Natali Sora, I., Santoro, A., (1994) J. Solid State Chem., 108, p. 80. , JSSCBI 0022-4596 10.1006/jssc.1994.1012http://www.ncnr.nist.gov/Larson, A.C., Von Dreele, R.B., (1987), LA-UR-86-748Toby, B.H., (2001) J. Appl. Crystallogr., 34, p. 210. , JACGAR 0021-8898 10.1107/S0021889801002242Von Dreele, R.B., (1994)Newville, M., Ravel, B., (2001)Torardi, C.C., McCarron III, E.M., Subramanian, M.A., Sleight, A.W., Cox, D.E., (1987) Mater. Res. Bull., 22, p. 1563. , MRBUAC 0025-5408Demazeau, G., Parent, C., Pouchard, M., Hagenmueller, P., (1972) Mater. Res. Bull., 7, p. 913. , MRBUAC 0025-5408David, W.I.F., Harrison, W.T.A., Ibberson, R.M., Weller, M.T., Grasmeder, J.R., Lanchester, P.C., (1987) Nature (London), 328, p. 328. , NATUAS 0028-0836Izumi, F., Asano, H., Ishigaki, T., Takayama-Muromachi, E., Matsui, Y., Uchida, Y., (1987) Jpn. J. Appl. Phys., Part 2, 26, p. 1153. , JAPLD8 0021-4922Izumi, F., Takayama-Muromachi, E., Kobayashi, M., Uchida, Y., Asano, H., Ishigaki, T., Watanabe, N., (1988) Jpn. J. Appl. Phys., Part 2, 27, p. 824. , JAPLD8 0021-4922Domenges, B., Hervieu, M., Michel, C., Maignan, A., Raveau, B., (1988) Phys. Status Solidi a, 107, p. 73. , PSSABA 0031-8965Ruiz-González, L., Boulahya, K., Parras, M., Alonso, J., González-Calbet, J.M., (2002) Chem.-Eur. J., 8 (24), p. 5694. , CEUJED. 0947-6539Shubnikov, A.V., Belov, N.V., (1964) Colored Symmetry, , Pergamon Press, Oxfor
    corecore